Login / Signup

Soft Denture Liner Adhesion to Conventional and CAD/CAM Processed Poly(Methyl Methacrylate) Acrylic Denture Resins-An In-Vitro Study.

Sara Mohammad Al TaweelHanan Nejer Al-OtaibiNawaf LabbanAfnan AlFouzanHuda Ahmed Alshehri
Published in: Materials (Basel, Switzerland) (2021)
This study aimed to evaluate the airborne-particle abrasion surface treatment effects on the tensile bond strength (TBS) between resilient denture liner and CAD/CAM or conventional heat polymerized poly (methyl methacrylate) (PMMA) acrylic denture resins. A total of 48 dumbbell-shaped specimens (70 mm in total length, and 12 mm and 7 mm in diameter at the thickest and thinnest section, respectively) were prepared from CAD/CAM and conventional acrylic resins. Before relining with denture liner, 12 specimens from each material were surface-treated by 110 µm Al2O3 airborne-particle abrasion, and the remaining specimens served as control (no treatment). Following relining, all the specimens were aged by thermal cycling (1000 cycles, 5-55 °C). The TBS of denture liner to acrylic denture resins was tested in a universal testing apparatus at a 5 mm/min crosshead speed. The debonded surfaces were visually examined for the failure modes. ANOVA and multiple comparisons posthoc analysis tests were applied to determine the significant difference in TBS between the study groups (α = 0.05). A significant difference in TBS was observed between the control and surface treated groups (p < 0.001) for both acrylic resins materials. However, there was no statistically significant difference in bond strength between the acrylic resins materials (p = 0.739). Surface treatment with airborne-particle abrasion demonstrated increased TBS of the soft denture liners to acrylic resins. The TBS of conventional and CAD/CAM acrylic resins to soft denture liners were not considerably different.
Keyphrases
  • particulate matter
  • staphylococcus aureus
  • air pollution
  • fine needle aspiration
  • biofilm formation
  • newly diagnosed
  • replacement therapy