Mammalian γ2 AMPK regulates intrinsic heart rate.
Arash YavariMohamed BellahceneAnnalisa BucchiSyevda SirenkoKatalin PinterNeil HerringJulia J JungKirill V TarasovEmily J SharpeMarkus WolfienGabor CzibikVioletta SteeplesSahar GhaffariChinh NguyenAlexander StockenhuberJoshua R St ClairChristian RimmbachYosuke OkamotoDongmei YangMingyi WangBruce D ZimanJack M MoenDaniel R RiordonChristopher RamirezManuel PainaJoonho LeeJing ZhangIsmayil AhmetMichael G MattYelena S TarasovaDilair BabanNatasha SahgalHelen LockstoneRathi PuliyadiJoseph de BonoOwen M SiggsJohn GomesHannah MuskettMahon L MaguireYoulia BeglovMatthew KellyPedro P N Dos SantosNicola J BrightAngela WoodsKatja GehmlichHenrik IsacksonGillian DouglasDavid J P FergusonJurgen E SchneiderAndrew TinkerOlaf WolkenhauerKeith M ChannonRichard J CornallEduardo B SternickDavid J PatersonCharles S RedwoodDavid CarlingCatherine ProenzaRobert DavidMirko BaruscottiDario DiFrancescoEdward G LakattaHugh WatkinsHouman AshrafianPublished in: Nature communications (2017)
AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.
Keyphrases
- heart rate
- protein kinase
- blood pressure
- heart rate variability
- skeletal muscle
- left ventricular
- single cell
- signaling pathway
- high intensity
- magnetic resonance
- transcription factor
- heart failure
- cell therapy
- stem cells
- magnetic resonance imaging
- computed tomography
- pulmonary embolism
- dna methylation
- ejection fraction
- dna binding
- tyrosine kinase
- contrast enhanced
- vena cava