Login / Signup

Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode.

Chang-Hua LiuGenevieve ClarkTaylor FryettSanfeng WuJiajiu ZhengFariba HatamiXiaodong XuArka Majumdar
Published in: Nano letters (2016)
Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.
Keyphrases
  • light emitting
  • room temperature
  • transition metal
  • high throughput
  • high speed
  • atomic force microscopy
  • healthcare
  • circulating tumor cells
  • social media
  • visible light