Login / Signup

Ag Nanowire-Plasmonic-Assisted Charge Separation in Hybrid Heterojunctions of Ppy-PEDOT:PSS/GaN Nanorods for Enhanced UV Photodetection.

Kedhareswara Sairam PasupuletiMaddaka ReddeppaByung-Guon ParkKoteswara Rao PetaJae-Eung OhSong-Gang KimMoon-Deock Kim
Published in: ACS applied materials & interfaces (2020)
The surface states, poor carrier life, and other native defects in GaN nanorods (NRs) limit their utilization in high-speed and large-gain ultraviolet (UV) photodetection applications. Making a hybrid structure is one of the finest strategies to overcome such impediments. In this work, a polypyrrole (Ppy)-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/GaN NRs hybrid structure is introduced for self-powered UV photodetection applications. This hybrid structure yields high photodetection performance, while pristine GaN NRs showed negligible photodetection properties. The ability of the photodetector is further boosted by functionalizing the hybrid structure with Ag nanowires (NWs). The Ag NWs-functionalized hybrid structure exhibited a responsivity of 3.1 × 103 (A/W), detectivity of 3.19 × 1014 Jones, and external quantum efficiency of 1.06 × 106 (%) under a UV illumination of λ = 382 nm. This high photoresponse is due to the huge photon absorption rising from the localized surface plasmonic effect of a Ag NWs network. Also, the Ag NWs significantly improved the rising and falling times, which were noted to be 0.20 and 0.21 s, respectively. The model band diagram was proposed with the assistance of X-ray photoelectron spectroscopy to explore the origin of the superior performance of the Ag NWs-decorated Ppy-PEDOT:PSS/GaN NRs photodetector. The proposed hybrid structure seems to be a promising candidate for the development of high-performance UV photodetectors.
Keyphrases