Login / Signup

Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model.

Hamid MotallebzadehSunil Puria
Published in: The Journal of the Acoustical Society of America (2022)
For evoked otoacoustic emissions (OAEs), the stimulus and emission signals traverse the middle ear (ME) in forward and reverse directions, respectively. In this study, a fully coupled three-dimensional finite-element model of the mouse ear canal (EC), ME, and cochlea was used to calculate ME pressure gains, impedances, and reflectances at the EC-entrance and stapes-footplate-cochlear-fluid interfaces. The cochlear model incorporates a series of interdigitated Y-shaped structures sandwiched between the basilar membrane and reticular lamina, each comprised of a Deiters' cell, its phalangeal-process extension, and an outer hair cell (OHC). By introducing random perturbations to the OHC gains, stimulation-frequency otoacoustic emissions (SFOAEs) were generated. Raising the perturbation magnitude from 10% to 80% increased the SFOAE magnitude by up to 24 dB in the 10-30 kHz frequency range. Increasing or decreasing the stiffness of the stapes annular ligament and eardrum by a factor of 8 changed the SFOAEs by up to 30 dB, but the round-trip ME gain as measured could not account for this. A modified round-trip ME gain, with reflections removed at the EC-entrance and stapes-cochlea boundaries, eliminated a ±10 dB discrepancy and allowed ME changes to be quantitatively associated with changes in measured OAEs.
Keyphrases
  • finite element
  • mouse model
  • single cell
  • cell therapy
  • municipal solid waste
  • hearing loss
  • life cycle
  • high frequency
  • bone marrow
  • heavy metals
  • sewage sludge