Positive interactions are observed at high frequencies in nearly all living systems, ranging from human and animal societies down to the scale of microbial organisms. However, historically, detailed ecological studies of mutualism have been relatively unrepresented. Moreover, while ecologists have long portrayed competition as a stabilizing process, mutualism is often deemed destabilizing. Recently, several key modelling studies have applied random matrix methods, and have further corroborated the instability of mutualism. Here, I reassess these findings by factoring in species densities into the "community matrix," a practice which has almost always been ignored in random matrix analyses. With this modification, mutualistic interactions are found to boost equilibrium population densities and stabilize communities by increasing their resilience. By taking into account transient dynamics after a strong population perturbation, it is found that mutualists have the ability to pull up communities by their bootstraps when species are dangerously depressed in numbers.