Login / Signup

Highly stable, stretchable, and versatile electrodes by coupling of NiCoS nanosheets with metallic networks for flexible electronics.

Yu ZhongJionghong LiangBolun ZhangFengming WangWeiqing HuangGuofa CaiChi ZhangYue XinBohua ChenXin He
Published in: Nanoscale (2022)
The rapid development of portable electronics has contributed to an urgent demand for versatile and flexible electrodes of wearable energy storage devices and pressure sensors. We fabricate a stretchable electrode by coupling the nickel-cobalt sulfide (NiCoS) nanosheet layer with Ag@NiCo nanowire (NW) networks. NiCoS wrinkled nanostructure, highly conductive networks, and intense interactions between substrate/networks and active materials/networks endow the electrodes with excellent energy storage capacity, superior electrochemical/mechanical stability, and good conductivity. A high-performance asymmetric supercapacitor is developed using the composite electrode. It operates in a wide potential window of 1.4 V and achieves a maximum energy density of 40.0 W h kg -1 at a power density of 1.1 kW kg -1 ; it also exhibits excellent mechanical flexibility and good waterproof performance. Moreover, a sandwiched capacitive pressure sensor constructed using the same electrodes has a wide sensing range (up to 260 kPa), low detection limit (∼47 mN), fast response (∼66 ms), and excellent mechanical stability (10 000 cycles). This study demonstrates that the appropriate design of the functional electrode facilitates the construction of various high-performance devices, denoting the versatility of our electrodes in the development of wearable electronics.
Keyphrases