Login / Signup

Non-invasive monitoring of biochemicals in hydrogel-assisted microfluidic chips.

Na ZhaoZehua YuJun HuangYuxi LiuYifan ZhaoXiangqian FuPeihua YangKang Liu
Published in: Nanoscale (2023)
Microfluidic chips are prevailingly utilized in biochemical monitoring and clinical diagnostics due to their capability of manipulating minuscule amounts of liquids in a highly integrated manner. Fabrication of microchannels on chips is commonly based on glass or polydimethylsiloxane, and sensing of the fluids and biochemicals within them relies on invasive embedded sensing accessories in the channels. In this study, we propose a hydrogel-assisted microfluidic chip for non-invasive monitoring of chemicals in microfluidics. A nanoporous hydrogel acts as a perfect sealing film on top of a microchannel to encapsulate liquid, and allows for the delivery of target biochemicals to its surface, leaving an open window for non-invasive analysis. This functionally "open" microchannel can be integrated with various electrical, electrochemical, and optical methods to realize accurate detection of biochemicals, suggesting the potential of hydrogel microfluidic chips for non-invasive clinical diagnostics and smart healthcare.
Keyphrases