Understanding and Predicting the Spatially Resolved Adsorption Properties of Nanoporous Materials.
Yangzesheng SunJ Ilja SiepmannPublished in: Journal of chemical theory and computation (2024)
Using knowledge from statistical thermodynamics and crystallography, we develop an image-image translation model, called SorbIIT, that uses three-dimensional grids of adsorbate-adsorbent interaction energies as input to predict the spatially resolved loading surface of nanoporous materials over a broad range of temperatures and pressures. SorbIIT consists of a closed-form differential model for loading-surface prediction and a U-Net to generate spatial differential distributions from the energy grids. SorbIIT is trained using the energy grids and adsorbate distributions (obtained from high-throughput simulations) of 50 synthesized and 70 hypothetical zeolites and applied for predicting the adsorption of carbon dioxide, hydrogen sulfide, n -butane, 2-methylpropane, krypton, and xenon in other zeolites from 256 to 400 K. Employing a quadratic isotherm model for the local differentiation, SorbIIT yields mean R 2 values of 0.998 for total adsorption and 0.6904 for local adsorption with a resolution of 0.2 Å, and a value of 0.721 for the structural similarity of the local loading distribution.