Unambiguous Signature of the Berry Phase in Intense Laser Dissociation of Diatomic Molecules.
Foudhil BouaklinePublished in: The journal of physical chemistry letters (2018)
We report strong evidence of Berry phase effects in intense laser dissociation of D2+ molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1) j. Indeed, the PAD local maxima (minima) observed in one case ( j odd) correspond to local minima (maxima) in the other case ( j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive ( j odd) or destructive ( j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D2+ molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.
Keyphrases