Login / Signup

Kidney organoids in translational medicine: Disease modeling and regenerative medicine.

Tomoya MiyoshiKen HiratsukaEdgar Garcia SaizRyuji Morizane
Published in: Developmental dynamics : an official publication of the American Association of Anatomists (2019)
The kidney is one of the most complex organs composed of multiple cell types, functioning to maintain homeostasis by means of the filtering of metabolic wastes, balancing of blood electrolytes, and adjustment of blood pressure. Recent advances in 3D culture technologies in vitro enabled the generation of "organoids" which mimic the structure and function of in vivo organs. Organoid technology has allowed for new insights into human organ development and human pathophysiology, with great potential for translational research. Increasing evidence shows that kidney organoids are a useful platform for disease modeling of genetic kidney diseases when derived from genetic patient iPSCs and/or CRISPR-mutated stem cells. Although single cell RNA-seq studies highlight the technical difficulties underlying kidney organoid generation reproducibility and variation in differentiation protocols, kidney organoids still hold great potential to understand kidney pathophysiology as applied to kidney injury and fibrosis. In this review, we summarize various studies of kidney organoids, disease modeling, genome-editing, and bioengineering, and additionally discuss the potential of and current challenges to kidney organoid research.
Keyphrases
  • single cell
  • rna seq
  • stem cells
  • induced pluripotent stem cells
  • blood pressure
  • crispr cas
  • high throughput
  • gene expression
  • risk assessment
  • skeletal muscle
  • bone marrow
  • ionic liquid
  • cell therapy
  • weight loss
  • heavy metals