The Mechanisms of Fur Development and Color Formation in American Mink Revealed Using Comparative Transcriptomics.
Lidong WangShengyang ZhouGuangshuai LiuTianshu LyuLupeng ShiYuehuan DongShangbin HeHonghai ZhangPublished in: Animals : an open access journal from MDPI (2022)
American mink fur is an important economic product, but the molecular mechanisms underlying its color formation and fur development remain unclear. We used RNA-seq to analyze the skin transcriptomes of young and adult mink with two different hair colors. The mink comprised black adults (AB), white adults (AW), black juveniles (TB), and white juveniles (TW) (three each). Through pair comparison and cross-screening among different subgroups, we found that 13 KRTAP genes and five signaling pathways (the JAK-STAT signaling pathway (cfa04630), signaling pathways regulating pluripotency of stem cells (cfa04550), ECM-receptor interaction (cfa04512), focal adhesion (cfa04510), and the Ras signaling pathway (cfa04014)) were related to mink fur development. We also found that members of a tyrosinase family ( TYR , TYRP1 , and TYRP2 ) are involved in mink hair color formation. The expression levels of TYR were higher in young black mink than in young white mink, but this phenomenon was not observed in adult mink. Our study found significant differences in adult and juvenile mink skin transcriptomes, which may shed light on the mechanisms of mink fur development. At the same time, the skin transcriptomes of black and white mink also showed differences, with the results varying by age, suggesting that the genes regulating hair color are active in early development rather than in adulthood. The results of this study provide molecular support in breeding for mink coat color and improving fur quality.