Login / Signup

FHOD-1/profilin-mediated actin assembly protects sarcomeres against contraction-induced deformation in C. elegans .

Michael J KimmichSumana SundaramurthyMeaghan A GearyLeila LesanpezeshkiCurtis V YinglingSiva A VanapalliRyan S LittlefieldDavid Pruyne
Published in: bioRxiv : the preprint server for biology (2024)
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from C. elegans results in thin body-wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that actin polymerization by FHOD-1 is required for its function in muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and profilins PFN-2 and PFN-3 to promote body-wall muscle growth. We further demonstrate dense bodies in fhod-1 and pfn-3 mutants are less stable than in wild type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin depolymerization factor/cofilin homolog UNC-60B in body-wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, and may account for the abnormally slow growth and reduced strength of body-wall muscle in fhod-1 mutants. Overall, these results show the importance of FHOD protein-mediated actin assembly to forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Keyphrases
  • skeletal muscle
  • wild type
  • cell migration
  • oxidative stress