Nbn-Mre11 interaction is required for tumor suppression and genomic integrity.
Jun Hyun KimAlexander V PensonBarry S TaylorJohn H J PetriniPublished in: Proceedings of the National Academy of Sciences of the United States of America (2019)
We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbn mid8 allele was expressed exclusively in hematopoietic lineages (in Nbn -/mid8vav mice). Unlike Nbn flox/floxvav mice with Nbn deficiency in the bone marrow, Nbn -/mid8vav mice were viable. Nbn -/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn -/mid8 mice developed highly penetrant T cell leukemias. Nbn -/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbn mid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn -/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.
Keyphrases
- bone marrow
- high fat diet induced
- acute lymphoblastic leukemia
- cell proliferation
- mouse model
- wild type
- mesenchymal stem cells
- transcription factor
- type diabetes
- dna methylation
- acute myeloid leukemia
- adipose tissue
- metabolic syndrome
- allogeneic hematopoietic stem cell transplantation
- genome wide
- dna damage response