[(Z)-N-(3-Fluoro-phen-yl)-O-methyl-thio-carbamato-κS](tri-phenyl-phosphane-κP)gold(I): crystal structure, Hirshfeld surface analysis and computational study.
Chien Ing YeoSang Loon TanHuey Chong KwongEdward R T TiekinkPublished in: Acta crystallographica. Section E, Crystallographic communications (2020)
The title phosphanegold(I) thiol-ate, C26H22AuFNOPS or [Au(C8H7FNOS)(C18H15P)], has the AuI centre coordinated by phosphane-P [2.2494 (8) Å] and thiol-ate-S [2.3007 (8) Å] atoms to define a close to linear geometry [P-Au-S = 176.10 (3)°]. The thiol-ate ligand is orientated so that the meth-oxy-O atom is directed towards the Au atom, forming an Au⋯O close contact of 2.986 (2) Å. In the crystal, a variety of inter-molecular contacts are discerned with fluoro-benzene-C-H⋯O(meth-oxy) and phenyl-C-H⋯F inter-actions leading to dimeric aggregates. These are assembled into a three-dimensional architecture by phenyl-C-H⋯S(thiol-ate) and phenyl-C-H⋯π(fluorobenzene, phen-yl) inter-actions. Accordingly, the analysis of the calculated Hirshfeld surface shows 30.8% of all contacts are of the type C⋯H/H⋯C but this is less than the H⋯H contacts, at 44.9%. Other significant contributions to the surface come from H⋯F/F⋯H [8.1%], H⋯S/S⋯H [6.9%] and H⋯O/O⋯H [3.2%] contacts. Two major stabilization energies have contributions from the phenyl-C-H⋯π(fluoro-benzene) and fluoro-benzene-C-H⋯C(imine) inter-actions (-37.2 kcal mol-1), and from the fluoro-benzene-C-H⋯F and phenyl-C-H⋯O inter-actions (-34.9 kcal mol-1), the latter leading to the dimeric aggregate.