Login / Signup

A visible-light-driven photoelectrochemical molecularly imprinted sensor based on titanium dioxide nanotube arrays loaded with silver iodide nanoparticles for the sensitive detection of benzoyl peroxide.

Li ZhongXiuqi LiRuilin LiuXiaoping WeiJianping Li
Published in: The Analyst (2019)
A novel ultrasensitive photoelectrochemical sensor for benzoyl peroxide (BPO) was constructed under visible light irradiation. A novel nanostructured material made of molecularly imprinted polymer (MIP)-modified silver iodide nanoparticle-titanium dioxide nanotube arrays (AgINPs-TiO2 NTs) was designed as a photoactive electrode (denoted as MIP@AgINPs-TiO2 NTs). AgI-sensitized TiO2 nanotube arrays were prepared by a simple dissolution-precipitation-calcination process and then employed as a matrix to graft the MIP recognition element. Such a newly designed molecularly imprinted photoelectrochemical sensor exhibits high sensitivity and selectivity for the determination of BPO. The photoelectrochemical analysis is highly linear over the BPO concentration range from 1 × 10-12 mol L-1 to 5 × 10-10 mol L-1 with a detection limit of 2.53 × 10-13 mol L-1 (S/N = 3, n = 11). The sensor designed based on a low cost and highly sensitive assay was successfully applied in the determination of BPO in spiked samples.
Keyphrases