Nickel-Catalyzed Regio- and Enantioselective Hydroamination of Unactivated Alkenes Using Carbonyl Directing Groups.
Changseok LeeHyung-Joon KangHuiyeong SeoSungwoo HongPublished in: Journal of the American Chemical Society (2022)
The asymmetric addition of an N-H bond to various alkenes via a direct catalytic method is a powerful way of synthesizing value-added chiral amines. Therefore, the enantio- and regioselective hydroamination of unactivated alkenes remains an appealing goal. Here, we report the highly enantio- and regioselective Ni-catalyzed hydroamination of readily available unactivated alkenes bearing weakly coordinating native amides or esters. This method succeeds for both terminal and internal unactivated alkenes and has a broad amine coupling partner scope. The mild reaction process is well suited for the late-stage functionalization of complex molecules and has the potential to gain modular access to enantioenriched β- or γ-amino acid derivatives and 1,2- or 1,3-diamines. Mechanistic studies reveal that a chiral bisoxazoline-bound Ni specie effectively leverages carbonyl coordination to achieve enantio- and regioselective NiH insertion into alkenes.