Login / Signup

Development of multifunctional membranes via plasma-assisted nonsolvent induced phase separation.

Yueh-Han HuangMeng-Jiy WangTai-Shung Chung
Published in: Nature communications (2024)
Demands on superhydrophobic, self-cleaning and piezoelectric membranes have gained significantly due to their potential to overcome global shortages in clean water and energy. In this study, we have discovered a novel plasma-assisted nonsolvent induced phase separation (PANIPS) method to prepare superhydrophobic, self-cleaning and piezoelectric poly(vinylidene difluoride) (PVDF) membranes without additional chemical modifications or post-treatments. The PANIPS membranes exhibit water contact angles ranging from 151.2° to 166.4° and sliding angles between 6.7° and 29.7°. They also show a high piezoelectric coefficient (d33) of 10.5 pC N -1 and can generate a high output voltage of 10 V pp . The PANIPS membranes can effectively recover pure water from various waste solutions containing Rose Bengal dye, humic acid, or sodium dodecyl sulfate via direct contact membrane distillation (DCMD). This study may provide valuable insights to fabricate PANIPS membranes and open up new avenues to molecularly design advanced superhydrophobic, self-cleaning, and piezoelectric membranes in the fields of clean water production, motion sensor, and piezoelectric nanogenerator.
Keyphrases
  • diabetic rats
  • high glucose
  • magnetic resonance imaging
  • computed tomography
  • heavy metals
  • drug delivery
  • risk assessment
  • mass spectrometry
  • climate change
  • metal organic framework