Login / Signup

Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability.

Mingchao ZhangAniket PalZhiqiang ZhengGaurav GardiErdost YildizMetin Sitti
Published in: Nature materials (2023)
Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications.
Keyphrases
  • drug delivery
  • cancer therapy
  • hyaluronic acid
  • high resolution
  • quality improvement
  • wound healing
  • healthcare
  • health information
  • high speed
  • social media
  • drug release