Switchable Direction of Liquid Transport via an Anisotropic Microarray Surface and Thermal Stimuli.
Qiuya ZhangLinlin HeXiaofang ZhangDongliang TianLei JiangPublished in: ACS nano (2019)
Design and construction of special surface microstructures has made many amazing breakthroughs in directional liquid transport. Despite much progress in this field, challenges still remain in on-demand switchable direction transport of liquid in situ and real-time via transforming the arrangement of the surface microstructure and external stimuli. Herein, we demonstrate a strategy to achieve switchable direction transport of liquid via a tunable anisotropic microarray surface, that is, assembling a V-shaped prism microarray (VPM) surface, which can also be intelligently manipulated by thermal stimuli. By transforming the parallel and staggered prism microstructure arrangement of the VPM, switchable direction transport of a liquid can be successfully achieved on the VPM surface. Flow direction switching among unidirectional transport, bidirectional transport, and reverse unidirectional transport is also achieved on the temperature-adaptive VPM surface by thermal stimuli, which can be used for on-demand liquid transport according to the paths of the microfluidic channels. The work provides a way for precise liquid manipulation in desired liquid transport, which may be utilized in nonpower conveying systems, autolubrication, life fluid medical instruments, and other microfluidic devices.