Login / Signup

Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO3 substrate.

Ming YangChenhui YanYanjun MaLian LiCheng Cen
Published in: Nature communications (2019)
The capability of controlling superconductivity by light is highly desirable for active quantum device applications. Since superconductors rarely exhibit strong photoresponses, and optically sensitive materials are often not superconducting, efficient coupling between these two characters can be very challenging in a single material. Here we show that, in FeSe/SrTiO3 heterostructures, the superconducting transition temperature in FeSe monolayer can be effectively raised by the interband photoexcitations in the SrTiO3 substrate. Attributed to a light induced metastable polar distortion uniquely enabled by the FeSe/SrTiO3 interface, this effect only requires a less than 50 µW cm-2 continuous-wave light field. The fast optical generation of superconducting zero resistance state is non-volatile but can be rapidly reversed by applying voltage pulses to the back of SrTiO3 substrate. The capability of switching FeSe repeatedly and reliably between normal and superconducting states demonstrate the great potential of making energy-efficient quantum optoelectronics at designed correlated interfaces.
Keyphrases
  • molecular dynamics
  • room temperature
  • amino acid
  • high resolution
  • structural basis
  • high speed