Login / Signup

Spreading of volatile droplets in a humidity-controlled environment.

Nayoung KimPallav KantDevaraj van der Meer
Published in: Soft matter (2024)
When a pure ethanol droplet is deposited on a dry, wettable and conductive substrate, it is expected to spread into a thin, uniform film. Here, we demonstrate that this uniform spreading behaviour can be altered significantly by controlling the ambient relative humidity. We show that higher relative humidity not only promotes faster spreading of the droplet, it also destabilizes the moving contact line, resulting in a fingering instability. We observe that these effects primarily emerge due to the hygroscopic nature of the pure droplet, which eventually leads to solutal-Marangoni effects. Additionally, heat transfer between the evaporating droplet and the underlying substrate also plays a crucial role in the overall dynamics. Thus, the overall spreading of a pure hygroscopic droplet is determined by a delicate interplay between solutal and thermal Marangoni effects.
Keyphrases
  • single cell
  • high throughput
  • air pollution
  • particulate matter
  • heat stress
  • high resolution
  • mass spectrometry
  • amino acid
  • tissue engineering