Login / Signup

Subject: UV-B radiation and low temperature promoted hypericin biosynthesis in adventitious root culture of Hypericum perforatum.

Farahnaz TavakoliMohammad RafieiolhossainiRudabeh RavashMorteza Ebrahimi
Published in: Plant signaling & behavior (2020)
The hypericin is assumed as a highly demanded and key bioactive compound, which has antiviral, antimicrobial, antioxidant, and antitumor properties isolated from Hypericum perforatum. Nowadays, increasing bioactive molecules' contents through generating novel compounds is one of the major research objectives of H. perforatum biotechnology; however, this plant remains recalcitrant and unmanageable to Agrobacterium mediated transformation and genetic improvement programs. In order to overcome these challenges, many researchers have focused on this unruly herb using biotic and abiotic eliciting strategies. Therefore, two experiments were separately designed for the evaluation of two types of abiotic elicitors, aiming at increasing the productivity of hypericin in the adventitious root suspension culture of H. perforatum. The first one was accomplished to evaluate the effect of UV-B light elicitors (the exposure time of 30, 60, and 90 min) and the recovery treatment (with or without) on hypericin content while the second one was assessed the effect of various temperatures (4°C, 8°C, 16°C, and 25°C) in three different exposure times (24 h, 72 h, and 7 d). Based on the results, UV-B (60 min) treatment followed by the recovery produced 0.430 µg/g DW hypericin and was distinguished as the most effective UV-B elicitation treatment. In addition, a temperature of 4°C for a period of 72 hours is required to get the highest amount of hypericin content. These findings indicate the fact that hypericin biosynthesis is notably affected by UV-B exposure time and Low-temperature. The data also clearly elucidate further mechanisms of hypericin production in H. perforatum adventitious root culture.
Keyphrases
  • staphylococcus aureus
  • public health
  • climate change
  • combination therapy
  • dna methylation
  • transcription factor
  • replacement therapy
  • deep learning
  • radiation induced
  • arabidopsis thaliana