Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder.
Sukhleen KourDeepa S RajanTyler R FortunaEric N AndersonCaroline WardYoungha LeeSangmoon LeeYong Beom ShinJong-Hee ChaeMurim ChoiKarine SiquierVincent CantagrelJeanne AmielElliot S StolermanSarah S BarnettMargot A CousinDiana CastroKimberly McDonaldBrian KirmseAndrea H NemethDhivyaa RajasundaramA Micheil InnesDanielle LynchPatrick FroskAbigail CollinsMelissa GibbonsMichele YangIsabelle DesguerreNathalie BoddaertCyril GitiauxSiri Lynne RydningKaja K SelmerRoser UrreiztiAlberto Garcia-OguizaAndrés Nascimento OsorioEdgard VerduraAurora PujolHannah R McCurryJohn E LandersSameer AgnihotriE Corina AndriescuShade B MoodyChanika PhornphutkulMaria J Guillen SacotoAmber BegtrupHenry HouldenJanbernd KirschnerDavid SchorlingSabine Rudnik-SchönebornTim M StromSteffen LeizKali JulietteRandal RichardsonYing YangYuehua ZhangMinghui WangJia WangXiaodong WangKonrad PlatzerSandra DonkervoortCarsten G BönnemannMatias WagnerMahmoud Y IssaHasnaa M ElbendaryValentina StanleyReza MaroofianJoseph G GleesonMaha Saad ZakiJan SenderekUdai Bhan PandeyPublished in: Nature communications (2021)
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.