Login / Signup

Piezoelectric biomaterials for neural tissue engineering.

Dongyu XuHui ZhangYu WangYuan ZhangFanglei YeLing LuRen-Jie Chai
Published in: Smart medicine (2023)
Nerve injury caused by trauma or iatrogenic trauma can lead to loss of sensory and motor function, resulting in paralysis of patients. Inspired by endogenous bioelectricity and extracellular matrix, various external physical and chemical stimuli have been introduced to treat nerve injury. Benefiting from the self-power feature and great biocompatibility, piezoelectric biomaterials have attracted widespread attention in biomedical applications, especially in neural tissue engineering. Here, we provide an overview of the development of piezoelectric biomaterials for neural tissue engineering. First, several types of piezoelectric biomaterials are introduced, including inorganic piezoelectric nanomaterials, organic piezoelectric polymers, and their derivates. Then, we focus on the in vitro and in vivo external energy-driven piezoelectric effects involving ultrasound, mechanical movement, and other external field-driven piezoelectric effects. Neuroengineering applications of the piezoelectric biomaterials as in vivo grafts for the treatment of central nerve injury and peripheral nerve injury are also discussed and highlighted. Finally, the current challenges and future development of piezoelectric biomaterials for promoting nerve regeneration and treating neurological diseases are presented.
Keyphrases