A subacute model of glaucoma based on limbal plexus cautery in pigmented rats.
Rafael LaniMariana Santana DiasCarla Andreia AbreuVictor G AraújoThais GonçaloGabriel Nascimento-Dos-SantosAdalmir Morterá DantasSilvana AllodiMario FioraniHilda Petrs-SilvaRafael LindenPublished in: Scientific reports (2019)
Glaucoma is a neurodegenerative disorder characterized by the progressive functional impairment and degeneration of the retinal ganglion cells (RGCs) and their axons, and is the leading cause of irreversible blindness worldwide. Current management of glaucoma is based on reduction of high intraocular pressure (IOP), one of its most consistent risk factors, but the disease proceeds in almost half of the patients despite such treatments. Several experimental models of glaucoma have been developed in rodents, most of which present shortcomings such as high surgical invasiveness, slow learning curves, damage to the transparency of the optic media which prevents adequate functional assessment, and variable results. Here we describe a novel and simple method to induce ocular hypertension in pigmented rats, based on low-temperature cauterization of the whole circumference of the limbal vascular plexus, a major component of aqueous humor drainage and easily accessible for surgical procedures. This simple, low-cost and efficient method produced a reproducible subacute ocular hypertension with full clinical recovery, followed by a steady loss of retinal ganglion cells and optic axons, accompanied by functional changes detected both by electrophysiological and behavioral methods.
Keyphrases
- optic nerve
- induced apoptosis
- low cost
- optical coherence tomography
- blood pressure
- risk factors
- cell cycle arrest
- end stage renal disease
- oxidative stress
- chronic kidney disease
- ejection fraction
- body mass index
- endoplasmic reticulum stress
- multiple sclerosis
- prognostic factors
- signaling pathway
- cataract surgery
- cell death
- peritoneal dialysis
- ionic liquid
- cell proliferation
- pi k akt
- arterial hypertension