A farewell to arms and legs: a review of limb reduction in squamates.
Marco CamaitiAlistair R EvansChristy A HipsleyDavid G ChapplePublished in: Biological reviews of the Cambridge Philosophical Society (2021)
Elongated snake-like bodies associated with limb reduction have evolved multiple times throughout vertebrate history. Limb-reduced squamates (lizards and snakes) account for the vast majority of these morphological transformations, and thus have great potential for revealing macroevolutionary transitions and modes of body-shape transformation. Here we present a comprehensive review on limb reduction, in which we examine and discuss research on these dramatic morphological transitions. Historically, there have been several approaches to the study of squamate limb reduction: (i) definitions of general anatomical principles of snake-like body shapes, expressed as varying relationships between body parts and morphometric measurements; (ii) framing of limb reduction from an evolutionary perspective using morphological comparisons; (iii) defining developmental mechanisms involved in the ontogeny of limb-reduced forms, and their genetic basis; (iv) reconstructions of the evolutionary history of limb-reduced lineages using phylogenetic comparative methods; (v) studies of functional and biomechanical aspects of limb-reduced body shapes; and (vi) studies of ecological and biogeographical correlates of limb reduction. For each of these approaches, we highlight their importance in advancing our understanding, as well as their weaknesses and limitations. Lastly, we provide suggestions to stimulate further studies, in which we underscore the necessity of widening the scope of analyses, and of bringing together different perspectives in order to understand better these morphological transitions and their evolution. In particular, we emphasise the importance of investigating and comparing the internal morphology of limb-reduced lizards in contrast to external morphology, which will be the first step in gaining a deeper insight into body-shape variation.