Login / Signup

Finite Element Modeling of the Combined Faradaic and Electrostatic Contributions to the Voltammetric Response of Monolayer Redox Films.

Katherine J LeveyMartin Andrew EdwardsHenry Sheldon WhiteJulie V Macpherson
Published in: Analytical chemistry (2022)
The voltammetric response of electrodes coated with a redox-active monolayer is computed by finite element simulations based on a generalized model that couples the Butler-Volmer, Nernst-Planck, and Poisson equations. This model represents the most complete treatment of the voltammetric response of a redox film to date and is made accessible to the experimentalist via the use of finite element modeling and a COMSOL-generated report. The model yields a full description of the electric potential and charge distributions across the monolayer and bulk solution, including the potential distribution associated with ohmic resistance. In this way, it is possible to properly account for electrostatic effects at the molecular film/electrolyte interface, which are present due to the changing charge states of the redox head groups as they undergo electron transfer, under both equilibrium and nonequilibrium conditions. Specifically, our numerical simulations significantly extend previous theoretical predictions by including the effects of finite electron-transfer rates ( k 0 ) and electrolyte conductivity. Distortion of the voltammetric wave due to ohmic potential drop is shown to be a function of electrolyte concentration and scan rate, in agreement with experimental observations. The commonly used Laviron analysis for the determination of k 0 fails to account for ohmic drop effects, which may be non-negligible at high scan rates. This model provides a more accurate alternative for k 0 determination at all scan rates. The electric potential and charge distributions across an electrochemically inactive monolayer and electrolyte solution are also simulated as a function of applied potential and are found to agree with the Gouy-Chapman-Stern theory.
Keyphrases
  • electron transfer
  • finite element
  • reduced graphene oxide
  • molecularly imprinted
  • computed tomography
  • ionic liquid
  • molecular dynamics simulations
  • room temperature
  • gold nanoparticles
  • simultaneous determination