Login / Signup

The versatile biochemistry of iron in macrophage effector functions.

Jacques Behmoaras
Published in: The FEBS journal (2020)
Macrophages are mononuclear phagocytes with remarkable polarization ability that allow them to have tissue-specific functions during development, homeostasis, inflammatory and infectious disease. One particular trophic factor in the tissue environment is iron, which is intimately linked to macrophage effector functions. Macrophages have a well-described role in the control of systemic iron levels, but their activation state is also depending on iron-containing proteins/enzymes. Haemoproteins, dioxygenases and iron-sulphur (Fe-S) enzymes are iron-binding proteins that have bactericidal, metabolic and epigenetic-related functions, essential to shape the context-dependent macrophage polarization. In this review, I describe mainly pro-inflammatory macrophage polarization focussing on the role of iron biochemistry in selected haemoproteins and Fe-S enzymes. I show how iron, as part of haem or Fe-S clusters, participates in the cellular control of pro-inflammatory redox reactions in parallel with its role as enzymatic cofactor. I highlight a possible coordinated regulation of haemoproteins and Fe-S enzymes during classical macrophage activation. Finally, I describe tryptophan and α-ketoglutarate metabolism as two essential effector pathways in macrophages that use diverse iron biochemistry at different enzymatic steps. Through these pathways, I show how iron participates in the regulation of essential metabolites that shape macrophage function.
Keyphrases
  • iron deficiency
  • adipose tissue
  • oxidative stress
  • ms ms
  • immune response
  • nitric oxide
  • type iii
  • visible light