Login / Signup

Fast SARS-CoV-2 Variant Detection Using Snapback Primer High-Resolution Melting.

Joseph C LownikJared S FarrarGrayson W WayAngela McKayPavitra RoychoudhuryAlexander L GreningerRebecca K Martin
Published in: Diagnostics (Basel, Switzerland) (2021)
SARS-CoV-2, the virus responsible for COVID-19, emerged in late 2019 and has since spread throughout the world, infecting over 200 million people. The fast spread of SARS-CoV-2 showcased the need for rapid and sensitive testing methodologies to help track the disease. Over the past 18 months, numerous SARS-CoV-2 variants have emerged. Many of these variants are suggested to be more transmissible as well as less responsive to neutralization by vaccine-induced antibodies. Viral whole-genome sequencing is the current standard for tracking these variants. However, whole-genome sequencing is costly and the technology and expertise are limited to larger reference laboratories. Here, we present the feasibility of a fast, inexpensive methodology using snapback primer-based high-resolution melting to test for >20 high-consequence SARS-CoV-2 spike mutations. This assay can distinguish between multiple variant lineages and be completed in roughly 2 h for less than $10 per sample.
Keyphrases