Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions.
Hyeonjun BaekMauro Brotons-GisbertAidan CampbellValerio VitaleJohannes LischnerKenji WatanabeTakashi TaniguchiBrian D GerardotPublished in: Nature nanotechnology (2021)
Moiré patterns with a superlattice potential can be formed by vertically stacking two layered materials with a relative twist or lattice constant mismatch. In transition metal dichalcogenide-based systems, the moiré potential landscape can trap interlayer excitons (IXs) at specific atomic registries. Here, we report that spatially isolated trapped IXs in a molybdenum diselenide/tungsten diselenide heterobilayer device provide a sensitive optical probe of carrier filling in their immediate environment. By mapping the spatial positions of individual trapped IXs, we are able to spectrally track the emitters as the moiré lattice is filled with excess carriers. Upon initial doping of the heterobilayer, neutral trapped IXs form charged IXs (IX trions) uniformly with a binding energy of ~7 meV. Upon further doping, the empty superlattice sites sequentially fill, creating a Coulomb staircase: stepwise changes in the IX trion emission energy due to Coulomb interactions with carriers at nearest-neighbour moiré sites. This non-invasive, highly local technique can complement transport and non-local optical sensing techniques to characterize Coulomb interaction energies, visualize charge correlated states, or probe local disorder in a moiré superlattice.