A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via In Situ Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma.
Zhou TianQitao HuZhouyi SunNing WangHuiling HeZhe TangWeiyu ChenPublished in: ACS nano (2023)
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for treating hepatocellular carcinoma (HCC), which could destroy tumors through hyperthermia and generate massive tumor-associated antigens (TAAs). However, residual malignant tissues or small satellite lesions are hard to eliminate, generally resulting in metastases and recurrence. Herein, an advanced in situ nanovaccine formed by layered double hydroxides carrying cGAMP (STING agonist) (LDHs-cGAMP) and adsorbed TAAs was designed to potentiate the RFA-induced antitumor immune response. As-prepared LDHs-cGAMP could effectively enter cancerous or immune cells, inducing a stronger type I interferon (IFN-I) response. After further adsorption of TAAs, nanovaccine generated sustained immune stimulation and efficiently promoted activation of dendritic cells (DCs). Notably, infiltrations of cytotoxic lymphocytes (CTLs) and activated DCs in tumor and lymph nodes were significantly enhanced after nanovaccine treatment, which distinctly inhibited primary, distant, and metastasis of liver cancer. Furthermore, such a nanovaccine strategy greatly changed the tumor immune microenvironment and promoted the response efficiency of anti-programmed death ligand 1 (αPD-L1) immunotherapy, significantly arresting the poorly immunogenic hepa1-6 liver cancer progression. These findings demonstrate the potential of nanovaccine as a booster for RFA in liver cancer therapy and provide a promising in situ cancer vaccination strategy.
Keyphrases
- radiofrequency ablation
- dendritic cells
- immune response
- lymph node
- minimally invasive
- cancer therapy
- regulatory t cells
- stem cells
- squamous cell carcinoma
- gene expression
- papillary thyroid
- high glucose
- neoadjuvant chemotherapy
- drug induced
- inflammatory response
- oxidative stress
- endothelial cells
- robot assisted
- sentinel lymph node
- lymph node metastasis
- combination therapy
- locally advanced
- aqueous solution