Login / Signup

Giant Valley-Zeeman Splitting from Spin-Singlet and Spin-Triplet Interlayer Excitons in WSe2/MoSe2 Heterostructure.

Tianmeng WangShengnan MiaoZhipeng LiYuze MengZhengguang LuZhen LianMark BleiTakashi TaniguchiKenji WatanabeSeth Ariel TongayDmitry SmirnovSu-Fei Shi
Published in: Nano letters (2019)
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moiré potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 heterobilayer with a 60° twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K' valleys, a result of the large Landé g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ∼10.7 and ∼15.2, respectively, which is in good agreement with theoretical expectation. The photoluminescence (PL) from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation with the valley polarization of the singlet interlayer exciton approaching unity at ∼20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.
Keyphrases