Login / Signup

Electric Field-Assisted Photochemical Water Splitting Should Operate with 287 nm Light.

Vinzenz BachlerWolfgang Gärtner
Published in: Photochemistry and photobiology (2016)
The major photoreaction of water is the homolytic splitting of one O-H bond starting from the 1(1) B1 excited state (λmax = 167 nm). This reaction produces H• and •OH radicals. The combination of two H• atoms leads to the potential energy carrier dihydrogen. However, the energy required to obtain the photoreactive 1(1) B1 electronic state is about 7.4 eV, which cannot be effectively provided by solar radiation. The sun light spectrum on earth comprises the visible and ultraviolet region, but shows vanishing intensity near 7 eV (177.1 nm). This work provides theoretical evidence that the photoreactive 1(1) B1 state of water can be shifted into the ultraviolet (UV-B) light region (≈287 nm) by including explicitly an electric field in the calculations of the water absorption spectrum. To accomplish such bathochromic shift, a large field strength of 3.08 VÅ(-1) is required. The field-dependent excitation energies were calculated by applying the symmetry-adapted cluster configuration interaction (SAC-CI) procedure. Based on this theoretical analysis, we propose that photochemical water splitting can be accomplished by means of 287 nm light provided the water molecule is favorably oriented by an external electric field and is subsequently activated by a reversal of the field orientation.
Keyphrases
  • photodynamic therapy
  • light emitting
  • density functional theory
  • molecular dynamics
  • minimally invasive
  • radiation therapy
  • climate change
  • high intensity