Login / Signup

MOF-Assimilated High-Sensitive Organic Field-Effect Transistors for Rapid Detection of a Chemical Warfare Agent.

Samik MallikShyam Chand PalSnehanjan AcharyyaShiv Prakash VermaAjoy MandalPrasanta Kumar GuhaMadhab C DasDipak Kumar Goswami
Published in: ACS applied materials & interfaces (2023)
The selective and rapid detection of trace amounts of highly toxic chemical warfare agents has become imperative for efficiently using military and civilian defense. Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid porous material that could be potential next-generation toxic gas sensors. However, the growth of a MOF thin film for efficiently utilizing the material properties for fabricating electronic devices has been challenging. Herein, we report a new approach to efficiently integrate MOF as a receptor through diffusion-induced ingress into the grain boundaries of the pentacene semiconducting film in the place of the most adaptive chemical functionalization method for sensor fabrication. We used bilayer conducting channel-based organic field-effect transistors (OFETs) as a sensing platform comprising CPO-27-Ni as the sensing layer, coated on the pentacene layer, showed a strong response toward sensing of diethyl sulfide, which is one of the stimulants of bis (2-chloroethyl) sulfide, a highly toxic sulfur mustard (HD). Using OFET as a sensing platform, these sensors can be a potential candidate for trace amounts of sulfur mustard detection below 10 ppm in real time as wearable devices for onsite uses.
Keyphrases