Variational regularisation for inverse problems with imperfect forward operators and general noise models.
Leon BungertMartin BurgerYury KorolevCarola-Bibiane SchönliebPublished in: Inverse problems (2020)
We study variational regularisation methods for inverse problems with imperfect forward operators whose errors can be modelled by order intervals in a partial order of a Banach lattice. We carry out analysis with respect to existence and convex duality for general data fidelity terms and regularisation functionals. Both for a priori and a posteriori parameter choice rules, we obtain convergence rates of the regularised solutions in terms of Bregman distances. Our results apply to fidelity terms such as Wasserstein distances, φ-divergences, norms, as well as sums and infimal convolutions of those.