Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery.
Jiran DongJinsong ZengBin WangJinpeng LiJun XuWenhua GaoKefu ChenPublished in: ACS applied materials & interfaces (2021)
Even though compressible carbon aerogels are widely studied for oil/organic solvent recovery, it is challenging to simultaneously achieve excellent mechanical performance and recovery efficiency due to the brittleness of the carbon skeleton. Here a novel strategy is proposed to efficiently fabricate a 3D elastic reduced graphene oxide (RGO)-cross-linked carbon aerogel. Notably, cellulose nanocrystals (CNCs) isolated from plant pulp act as an essential component, and prehydrolysis liquor (PHL), an industrial byproduct in the plant pulping process, serves as the adhesion promoter to achieve enhancement of the strength and flexibility of the carbon aerogel. For the first time, all components (pulp and PHL) of the tree were fully exploited to design a carbon aerogel. The formation of wavy carbon layers with springboard elastic supporting microstructure enables mechanical stretch and shrink as well as avoids interfacial collapse during compression. Benefiting from the unique wavy layer structure and strong interaction, the carbon aerogels are ultralight (4.98 mg cm-3) and exhibit supercompression (undergoing extreme strain of 95%) and superelasticity (about 100% height retention after 500 cycles at a strain of 50%). Particularly, the carbon aerogel can selectively and quickly adsorb various oily contaminants, exhibiting high oil/organic solvents absorption capacity (reaches up to 276 g g-1 for carbon tetrachloride) and good recyclability. Finally, practical applications of the carbon aerogel in oil-cleanup and pollution-remediation devices are exhibited. Hence, this versatile and robust functionalized carbon aerogel has promising potential in oil cleanup and pollution remediation.