Login / Signup

Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes.

Gang HuangJiuhui HanFan ZhangZiqian WangHamzeh KashaniKentaro WatanabeMingwei Chen
Published in: Advanced materials (Deerfield Beach, Fla.) (2018)
The key bottlenecks hindering the practical implementations of lithium-metal anodes in high-energy-density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high-surface-area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen-doped graphene as the sought-after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite-free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long-term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high-energy-density rechargeable lithium batteries.
Keyphrases
  • solid state
  • tissue engineering
  • ion batteries
  • mental health
  • room temperature
  • minimally invasive
  • metal organic framework
  • high intensity
  • gold nanoparticles
  • highly efficient
  • walled carbon nanotubes