Radical Stitching Polymerization and Its Alternating Copolymerization.
Yusuke HamadaSoya TogawaRyo ShintaniPublished in: Journal of the American Chemical Society (2024)
Polymers possessing saturated fused polycycles in the main chain repeating unit have been underexplored despite their potential utility based on their expected properties such as high rigidity, chemical resistance, transparency, and thermal stability. In this regard, herein, we developed a radical stitching polymerization of styryl vinyl ketones for the synthesis of polyketones possessing saturated fused bicyclic repeating units. The polymerization proceeded smoothly with a high degree of stitching efficiency in a chain-growth manner under free radical conditions. This method was further extended to the alternating copolymerization of styryl vinyl ketones and 1-styryl-2-vinylbenzenes, representing the first alternating stitching copolymerization of two different monomers. The obtained polymers were found to show promising thermal properties and high transparency in the visible light region.
Keyphrases