Login / Signup

Effect of the proximal secondary sphere on the self-assembly of tetrahedral zinc-oxo clusters.

Michał TerleckiIwona JustyniakMichał K LeszczyńskiJanusz Lewiński
Published in: Communications chemistry (2021)
Metal-oxo clusters can serve as directional and rigid building units of coordination and noncovalent supramolecular assemblies. Therefore, an in-depth understanding of their multi-faceted chemistry is vital for the development of self-assembled solid-state structures of desired properties. Here we present a comprehensive comparative structural analysis of isostructural benzoate, benzamidate, and new benzamidinate zinc-oxo clusters incorporating the [O,O]-, [O,NH]- and [NH,NH]-anchoring donor centers, respectively. We demonstrated that the NH groups in the proximal secondary coordination sphere are prone to the formation of intermolecular hydrogen bonds, which affects the packing of clusters in the crystal structure. Coordination sphere engineering can lead to the rational design of new catalytic sites and novel molecular building units of supramolecular assemblies.
Keyphrases
  • crystal structure
  • room temperature
  • solid state
  • perovskite solar cells
  • energy transfer
  • high resolution
  • optical coherence tomography
  • drug discovery