Lack of correlation between growth, stress and virulence phenotypes in strains of Salmonella enterica serovar Enteritidis, S. Typhimurium DT104, S. 4,12, b:- and S. Liverpool.
John Elmerdahl OlsenDorte FreesNiels Christian KyvsgaardLisa BarcoPublished in: Letters in applied microbiology (2024)
Strains of S. Enteritidis (SEnt, n = 10) and S. Typhimurium (STm, n = 11), representing clones with high impact on human health, and strains of S. 4,12: b:- (S412B n = 11) and S. Liverpool (SLiv, n = 4), representing clones with minor impact on human health were characterized for 16 growth, stress and virulence phenotypes to investigate whether systematic differences exists in their performance in these phenotypes, and whether there was correlation between performance in different phenotypes. The term serotype was not found to be predictive of a certain type of performance in any phenotype, and surprisingly, on average, strains of SEnt and STm were not significantly better in adhering to and invading cultured intestinal cells than the less pathogenic types. Forest analysis identified desiccation tolerance and the ability to grow at 42°C with high salt as the characters that separated serovars with low human health impact (S412B/SLiv) from serovars with high human health impact (SEnt/STm). The study showed that variation in phenotypes was high even within serovars and correlation between phenotypes were low, i.e. the way that a strain performed phenotypically in one of the tested conditions had low predictive value for the performance of the strain in other conditions.