Login / Signup

Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review.

Julien IssaMouna JaberIsmail RifaiPaul E MozdziakBartosz KempistyMarta Dyszkiewicz-Konwińska
Published in: Medicina (Kaunas, Lithuania) (2023)
This study aims to evaluate the diagnostic accuracy of artificial intelligence in detecting apical pathosis on periapical radiographs. A total of twenty anonymized periapical radiographs were retrieved from the database of Poznan University of Medical Sciences. These radiographs displayed a sequence of 60 visible teeth. The evaluation of the radiographs was conducted using two methods (manual and automatic), and the results obtained from each technique were afterward compared. For the ground-truth method, one oral and maxillofacial radiology expert with more than ten years of experience and one trainee in oral and maxillofacial radiology evaluated the radiographs by classifying teeth as healthy and unhealthy. A tooth was considered unhealthy when periapical periodontitis related to this tooth had been detected on the radiograph. At the same time, a tooth was classified as healthy when no periapical radiolucency was detected on the periapical radiographs. Then, the same radiographs were evaluated by artificial intelligence, Diagnocat (Diagnocat Ltd., San Francisco, CA, USA). Diagnocat (Diagnocat Ltd., San Francisco, CA, USA) correctly identified periapical lesions on periapical radiographs with a sensitivity of 92.30% and identified healthy teeth with a specificity of 97.87%. The recorded accuracy and F1 score were 96.66% and 0.92, respectively. The artificial intelligence algorithm misdiagnosed one unhealthy tooth (false negative) and over-diagnosed one healthy tooth (false positive) compared to the ground-truth results. Diagnocat (Diagnocat Ltd., San Francisco, CA, USA) showed an optimum accuracy for detecting periapical periodontitis on periapical radiographs. However, more research is needed to assess the diagnostic accuracy of artificial intelligence-based algorithms in dentistry.
Keyphrases
  • artificial intelligence
  • machine learning
  • cone beam computed tomography
  • deep learning
  • big data
  • cone beam
  • healthcare
  • case report
  • clinical practice