Login / Signup

Reliability of a TMS-derived threshold matrix of corticomotor function.

Maxine J ShanksJohn CirilloCathy M StinearWinston D Byblow
Published in: Experimental brain research (2023)
Transcranial magnetic stimulation (TMS) studies typically focus on suprathreshold motor evoked potentials (MEPs), overlooking small MEPs representing subthreshold corticomotor pathway activation. Assessing subthreshold excitability could provide insights into corticomotor pathway integrity and function, particularly in neurological conditions like stroke. The aim of the study was to examine the test-retest reliability of metrics derived from a novel compositional analysis of MEP data from older adults. The study also compared the composition between the dominant (D) and non-dominant (ND) sides and explored the association between subthreshold responses and resting motor threshold. In this proof-of-concept study, 23 healthy older adults participated in two identical experimental sessions. Stimulus-response (S-R) curves and threshold matrices were constructed using single-pulse TMS across intensities to obtain MEPs in four upper limb muscles. S-R curves had reliable slopes for every muscle (Intraclass Correlation Coefficient range = 0.58-0.88). Subliminal and suprathreshold elements of the threshold matrix showed good-excellent reliability (D subliminal ICC = 0.83; ND subliminal ICC = 0.79; D suprathreshold ICC = 0.92; ND suprathreshold ICC = 0.94). By contrast, subthreshold elements of the matrix showed poor reliability, presumably due to a floor effect (D subthreshold ICC = 0.39; ND subthreshold ICC = 0.05). No composition differences were found between D and ND sides (suprathreshold BF 01  = 3.85; subthreshold BF 01  = 1.68; subliminal BF 01  = 3.49). The threshold matrix reliably assesses subliminal and suprathreshold MEPs in older adults. Further studies are warranted to evaluate the utility of compositional analyses for assessing recovery of corticomotor pathway function after neurological injury.
Keyphrases