Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes.
Aimin WeiXinkai XieZhen WenHechuang ZhengHuiwen LanHuiyun ShaoXuhui SunJun ZhongShuit-Tong LeePublished in: ACS nano (2018)
Hematite is one of the most promising photoanodes for photoelectrochemical (PEC) solar water splitting. However, due to the low conduction band position for water reduction, an external bias is necessarily required with the consumption of extra power. In this work, a titanium modified hematite (Ti-Fe2O3) photoanode-based self-powered PEC water splitting system in tandem with a rotatory disc-shaped triboelectric nanogenerator (RD-TENG) has been developed. It is a fantastic strategy to effectively drive the hematite-based PEC water splitting by using the environmental mechanical energy through a TENG. When the rotation speed is 65 rpm (water flowing rate ∼0.61 m/s), the peak current reaches to 0.12 mA under illumination contrast to that in the dark with almost zero. As for 80 rpm, the peak currents are 0.17 and 0.33 mA in the dark or under illumination, respectively, indicating the simultaneous occurrence of electrolysis and PEC water splitting. When higher than 120 rpm, the peak current in the dark is nearly equal to that under illumination, which can be attributed to the high enough peak voltage for direct electrolysis of water. Such a self-powered PEC water splitting system provides an alternative strategy that enables to convert both solar and mechanical energies into chemical energies.