Plastid-expressed Bacillus thuringiensis (Bt) cry3Bb confers high mortality to a leaf eating beetle in poplar.
Shijing XuYiqiu ZhangShengchun LiLing ChangYuyong WuJiang ZhangPublished in: Plant cell reports (2019)
The Bacillus thuringiensis (Bt) cry3Bb gene was successfully introduced into poplar plastid genome, leading to transplastomic poplar with high mortality to Plagiodera versicolora. Poplar (Populus L.) is one of the main resource of woody industry, but being damaged by insect pests. The feasibility and efficiency of plastid transformation technology for controlling two lepidopteran caterpillars have been demonstrated previously. Here, we introduced B. thuringiensis (Bt) cry3Bb into poplar plastid genome by biolistic bombardment for controlling P. versicolora, a widely distributed forest pest. Chimeric cry3Bb gene is controlled by the tobacco plastid rRNA operon promoter combined with the 5'UTR from gene10 of bacteriophage T7 (NtPrrn:T7g10) and the 3'UTR from the E. coli ribosomal RNA operon rrnB (TrrnB). The integration of transgene and homoplasmy of transplastomic poplar plants was confirmed by Southern blot analysis. Northern blot analysis indicated that cry3Bb was transcribed to both read through and shorter length transcripts in plastid. The transplastomic poplar expressing Cry3Bb insecticidal protein showed the highest accumulation level in young leaves, which reach up to 16.8 μg/g fresh weight, and comparatively low levels in mature and old leaves. Feeding the young leaves from Bt-Cry3Bb plastid lines to P. versicolora caused 100% mortality in the first-instar larvae after only 1 day, in the second-instar larvae after 2 days, and in the third-instar larvae for 3 days. Thus, we report a successful extension of plastid engineering poplar against the chrysomelid beetle.
Keyphrases
- growth factor
- recombinant human
- genome wide
- cardiovascular events
- aedes aegypti
- copy number
- dna methylation
- escherichia coli
- physical activity
- risk factors
- weight loss
- gene expression
- climate change
- type diabetes
- cardiovascular disease
- zika virus
- transcription factor
- genome wide identification
- bone marrow
- cell therapy
- essential oil
- body weight
- weight gain