Quantifying the accuracy of inter-beat intervals acquired from consumer-grade photoplethysmography wristbands using an electrocardiogram-aided information-based similarity approach.
Xingran CuiJing WangShan XueZeguang QinChung-Kang PengPublished in: Physiological measurement (2024)
Objective . Although inter-beat intervals (IBI) and the derived heart rate variability (HRV) can be acquired through consumer-grade photoplethysmography (PPG) wristbands and have been applied in a variety of physiological and psychophysiological conditions, their accuracy is still unsatisfactory. Approach. In this study, 30 healthy participants concurrently wore two wristbands (E4 and Honor 5) and a gold-standard electrocardiogram (ECG) device under four conditions: resting, deep breathing with a frequency of 0.17 Hz and 0.1 Hz, and mental stress tasks. To quantitatively validate the accuracy of IBI acquired from PPG wristbands, this study proposed to apply an information-based similarity (IBS) approach to quantify the pattern similarity of the underlying dynamical temporal structures embedded in IBI time series simultaneously recorded using PPG wristbands and the ECG system. The occurrence frequency of basic patterns and their rankings were analyzed to calculate the IBS distance from gold-standard IBI, and to further calculate the signal-to-noise ratio (SNR) of the wristband IBI time series. Main results. The accuracies of both HRV and mental state classification were not satisfactory due to the low SNR in the wristband IBI. However, by rejecting data segments of SNR < 25, the Pearson correlation coefficients between the wristbands' HRV and the gold-standard HRV were increased from 0.542 ± 0.235 to 0.922 ± 0.120 for E4 and from 0.596 ± 0.227 to 0.859 ± 0.145 for Honor 5. The average accuracy of four-class mental state classification increased from 77.3% to 81.9% for E4 and from 79.3% to 83.3% for Honor 5. Significance. Consumer-grade PPG wristbands are acceptable for HR and HRV monitoring when removing low SNR segments. The proposed method can be applied for quantifying the accuracies of IBI and HRV indices acquired via any non-ECG system.