Login / Signup

The Pursuit of Perphenylterphenyls.

Yuchen DuAlex McSkimmingJoel T MagueRobert A Pascal
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2022)
Tetradecaphenyl-p-terphenyl (2) was synthesized from 2,3,5,6-tetraphenyl-1,4-diiodobenzene (11) by two methods. Ullmann coupling of 11 with pentaphenyliodobenzene (9) gave compound 2 in 1.7 % yield, and Sonogashira coupling of 11 with phenylacetylene, followed by a double Diels-Alder reaction of the product diyne 12 with tetracyclone (6), gave 2 in 1.5 % overall yield. The latter reaction also gave the monoaddition product 4-(phenylethynyl)-2,2',3,3',4',5,5',6,6'-nonaphenylbiphenyl (13) in 4 % overall yield. The X-ray structures of compounds 2 and 13 show them to possess core aromatic rings distorted into shallow boat conformations. Density functional calculations indicate that these unusual structures are not the lowest energy conformations in the gas phase and may be the result of packing forces in the crystal. In addition, while uncorrected DFT calculations indicate that the strain energy in compound 2 is approximately 50 kcal/mol, dispersion-corrected DFT calculations suggest that it is essentially unstrained, due to compensating, favorable, intramolecular interactions of its many phenyl rings. An attempted synthesis of tetradecaphenyl-o-terphenyl (4) by reaction of diphenylhexatriyne (14) with three equivalents of tetracyclone at 350 °C gave only the diadduct 2-(phenylethynyl)-2',3,3',4,4',5,5',6,6'-nonaphenylbiphenyl (15) in 17 % yield. Even higher temperatures failed to produce 4 and lowered the yield of 15, perhaps due to rapid decomposition of the starting materials. Ullmann coupling of 3,4,5,6-tetraphenyl-1,2-diiodobenzene (16) and compound 9 also failed to give compound 4.
Keyphrases