Login / Signup

Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet.

Masafumi KogaDo Hyung KangZachary N HeimPhilipp MeyerBlake A EricksonNeal HaldarNegar BaradaranMartina HavenithDaniel M Neumark
Published in: Physical chemistry chemical physics : PCCP (2024)
Time-resolved photoelectron spectroscopy using an extreme-ultraviolet (XUV) probe pulse was used to investigate the UV photoinduced dynamics of adenine (Ade), adenosine (Ado), and adenosine-5-monophosphate (AMP) in a liquid water jet. In contrast to previous studies using UV probe pulses, the XUV pulse at 21.7 eV can photoionize all excited states of a molecule, allowing for full relaxation pathways to be addressed after excitation at 4.66 eV. This work was carried out using a gas-dynamic flat liquid jet, resulting in considerably enhanced signal compared to a cylindrical jet. All three species decay on multiple time scales that are assigned based on their decay associated spectra; the fastest decay of ∼100 fs is assigned to ππ* decay to the ground state, while a smaller component with a lifetime of ∼500 fs is attributed to the nπ* state. An additional slower channel in Ade is assigned to the 7H Ade conformer, as seen previously. This work demonstrates the capability of XUV-TRPES to disentangle non-adiabatic dynamics in an aqueous solution in a state-specific manner and represents the first identification of the nπ* state in the relaxation dynamics of adenine and its derivatives.
Keyphrases
  • aqueous solution
  • protein kinase
  • high frequency
  • single molecule
  • ionic liquid
  • blood pressure
  • high resolution
  • climate change
  • magnetic resonance
  • quantum dots
  • room temperature
  • solid state
  • bioinformatics analysis