Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation.
Yogesh SharmaAndrew HemmingsRupesh Kailasrao DeshmukhAshwani PareekPublished in: Journal of experimental botany (2024)
The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, which are elements that exhibit properties of both metals and nonmetals, can have different effects on plant growth, ranging from being essential and beneficial to being toxic. The toxicity of metalloids in plants arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters that regulate their uptake and distribution in plants. Arguably, genomic sequence analysis suggests the presence of such transporter families throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding transporters' chemistry to atomic detail is important to achieve desired genetic modifications for crop improvement. Here, we outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating adaptations of plants to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review intends to highlight the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.