Login / Signup

Lysosomal K + channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease.

Lili QuBingqian LinWenping ZengChunhong FanHaotian WuYushu GeQianqian LiCanjun LiYanan WeiJing XinXingbing WangDan LiuChunlei Cang
Published in: EMBO reports (2022)
Lysosomes are degradative organelles and play vital roles in a variety of cellular processes. Ion channels on the lysosomal membrane are key regulators of lysosomal function. TMEM175 has been identified as a lysosomal potassium channel, but its modulation and physiological functions remain unclear. Here, we show that the apoptotic regulator Bcl-2 binds to and inhibits TMEM175 activity. Accordingly, Bcl-2 inhibitors activate the channel in a caspase-independent way. Increased TMEM175 function inhibits mitophagy, disrupts mitochondrial homeostasis, and increases production of reactive oxygen species (ROS). ROS further activates TMEM175 and thus forms a positive feedback loop to augment apoptosis. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), knockout (KO) of TMEM175 mitigated motor impairment and dopaminergic (DA) neuron loss, suggesting that TMEM175-mediated apoptosis plays an important role in Parkinson's disease (PD). Overall, our study reveals that TMEM175 is an important regulatory site in the apoptotic signaling pathway and a potential therapeutic target for Parkinson's disease (PD).
Keyphrases